Kinetic analysis of oxygen dynamics under a variable work rate.
نویسندگان
چکیده
Measurements of oxygen uptake are central to methods for the assessment of physical fitness and endurance capabilities in athletes. Two important parameters extracted from such data of incremental exercise tests are the maximal oxygen uptake and the critical power. A commonly accepted model of the dynamics of oxygen uptake during exercise at a constant work rate comprises a constant baseline oxygen uptake, an exponential fast component, and another exponential slow component for heavy and severe work rates. We have generalized this model to variable load protocols with differential equations that naturally correspond to the standard model for a constant work rate. This provides the means for predicting the oxygen uptake response to variable load profiles including phases of recovery. The model parameters have been fitted for individual subjects from a cycle ergometer test, including the maximal oxygen uptake and critical power. The model predictions have been validated by data collected in separate tests. Our findings indicate that the oxygen kinetics for a variable exercise load can be predicted using the generalized mathematical standard model. Such models can be applied in the field where the constant work rate assumption generally is not valid.
منابع مشابه
Investigation of Auto Ignition Condition under Different Parameters
In this work, the potential of auto-ignition of heavy oil during in-situ combustion (ISC) process was studied. Kinetic studies were carried out using Thermo Gravimetric Analyzer (TGA), Differential Scanning Calorimetry (DSC) and Accelerating Rate Calorimetric (ARC) techniques. Effects of oxygen partial pressure, reservoir pressure and clay on auto ignition condition were investigated on a n...
متن کاملMolecular Dynamics Simulation of Al/NiO Thermite Reaction Using Reactive Force Field (ReaxFF)
In this work, the thermal reaction of aluminum (Al) and nickel oxide (NiO) was investigated by molecular dynamics simulations. Some effective features of reaction such as reaction temperature, the reaction mechanism, and diffusion rate of oxygen into aluminum structure were studied. ReaxFF force field was performed to study the Al/NiO thermite reaction behavior at five different temperatures (5...
متن کاملAnalytical and comparative investigations on counter flow heat exchanger using computational fluid dynamics
This paper presents a comprehensive and exclusive thermodynamic analysis of counter flow heat exchanger under various operating and geometrical conditions. Analysis system (ANSYS) workbench 14.0 has been used for computational analysis and comparison with previous literature has been carried out in view of variable temperature and mass flow rate of hot and cold fluids. An analytical and statist...
متن کاملModeling Oxygen Dynamics under Variable Work Rate
Measurements of oxygen uptake and blood lactate content are central to methods for assessment of physical fitness and endurance capabilities in athletes. Two important parameters extracted from such data of incremental exercise tests are the maximal oxygen uptake and the critical power. A commonly accepted model of the dynamics of oxygen uptake during exercise at constant work rate comprises a ...
متن کاملDetermination of Reaction Kinetic Parameters from Variable Temperature Kinetic Study for Oxidative Addition Reaction on Binuclear Cyclometalated Platinum(II) Complexes
The pseudo-first order rate constants and activation parameters have been determined using two methods, constant-temperature kinetic (CTK) and variable temperature kinetic (VTK), for the oxidative addition reactions of [Pt2Me2(C^N)2(µ-dppf)], (1a, C^N = deprotonated 2-phenylpyridine (ppy); 1b, C^N = deprotonated benzo[h]quinoline (bhq)) with MeI. The results obtained from VTK method are in agre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human movement science
دوره شماره
صفحات -
تاریخ انتشار 2017